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4. Scientific progress and accomplishments

"Detailed descriptions can be found in the published papers cited above. An overview of the research project is given below.

Ferromagnetismnin Transition-Metal Doped ZnO

ABSTRACT

ZnO is an attractive candidate for spintronics studies because of its potential for exhibiting high Curie temperatures and the
relative lack of ferromagnetic second phases in the material. In this paper we review experimental results on transition metal doping of
ZnO and the current state of theories for the ferromagnetism. It is important to re-examine some of the earlier concepts for spintronics
devices, such as the spin field-effect transistor, to account for the presence of the strong magnetic field which has deleterious effects.
In some of these cases, the spin device appears to have no advantage relative to the conventional charge-control electronic analog. We
have been unable to detect optical spin polarization in ZnO.

Introduction

There is strong interest in the development of dilute magnetic semiconductors (DMS) that are ferromagnetic at room temperature
for devices such as spin-based light-emitting diodes, sensors and transistors that utilize electron spin in addition to charge (1-11). The
ferromagnetism is induced by incorporation into substitutional sites of large concentrations of transition metal (TM) or rare earth ions
into the semiconductor. Both types of ions have partially filled d andf shells, respectively, which give rise to unpaired electrons. The
resulting magnetic behavior is found to be a strong function of a number of parameters, including the concentration of the TM ions in
the crystal, the carrier density and the crystal quality. A major challenge is to prevent formation of second phases that may dominate
the magnetic properties of the doped semiconductor, since the concentrations of transition metal ions is usually well above the solid
solubility. The usually small amount of magnetization induced by the transition metal doping and difficulty in maintaining a single-
phase material have led to many conflicting reports in the literature.

The more conventional DMS materials such as GaMnAs, InMnAs, and GaMnSb, show relatively low magnetic ordering
temperature (- 170 K for GaMnAs).These materials provide a rich environment for basic studies of magnetism in semiconductors but
the low Curie temperatures limit their potential applications. The wide bandgap materials GaMnN and ZnMnO appear promising for
obtaining robust room temperature ferromagnetism (-86). Figure 1 shows that the wider bandgap semiconductors, which tend to have
smaller lattice constants, large p-d hybridization and small spin-orbit interaction, are predicted to have higher Curie temperatures (I2).
Even though the theories are still under development and there is disagreement between groups, there is some consensus that the wider
bandgap materials have the most promise for achieving high Curie temperatures.

Summary of Current Understanding

The standard mean field theory that is applicable to carrier-driven magnetism in systems such as GaMnAs in which the transition
metal doping also creates shallow acceptor states predicts that the Curie temperature will be dependent on the concentration of
uncompensated Mn spins, the coupling constant between localized Mn spins and the free holes (p-d coupling), the effective mass of
the holes and the free hole concentration (1,3,12). For low carrier density systems such as ZnO, mechanisms other than carrier-induced
ferromagnetism are more likely. An example is shown in Figure 2, which shows a schematic of the formation of bound magnetic
polarons (BMP) in a system that also has direct anti-ferromagnetic coupling between closely spaced transition-metal ions (.As the
sample temperature is lowered, the polarons increase in radius and eventually overlap at the Curie temperature.

The work of Sato and Katayama-Yoshida suggests that the ferromagnetic state is predicted to stabilize for most of the
transition metal dopants in ZnO except Mn, as shown in Figure 3. Some of the theoretical predictions suggest that only p-type
(Zn,Mn)O can lead to ferromagnetism (6,13,33-37) (Figure 4). Experimentally however, it is difficult to obtain robust p-type doping of
ZnO in the presence of high concentrations of transition metals and observations of ferromagnetism have been for insulating
(Zn,Mn)O, n-type (Zn,Mn)O, and undoped (Zn,Mn)O. Values of Tc above room temperature have been reported for Mn, Co, Sc, Ti
and V-doped n-type ZnO powders and films deposited on many different types of substrates methods such as sintering and pulsed
laser deposition. Mn doping is attractive since the only potential second phase that contributes to the magnetism is Mn30 4 with a Curie
temperature below 50K. By sharp contrast, Co-doping is a more complicated case, since Co itself is ferromagnetic. The data in the
literature on Co-doping show a wide variety of results. Bulk Znl..Co.O has been found to be antiferromagnetic in polycrystalline
powder samples prepared by both solid-state and liquid-phase reactions. This antiferromagnetic behavior may result from Co clusters
observed in the Znl.xCoxO powder, together with a population of interstitial Co atoms instead of substitutional Co(71). Some
experimental data show that homogeneous films of Znl.•Co.O exhibit spin-glass behavior, whereas inhomogeneous Znl.•Co.O films
are more likely to demonstrate room-temperature ferromagnetism 6-8.71 . This is evidence that Co clusters might be the source of the
high Tc ferromagnetism in some Znl.-Co.O.Norton et al .observed such an effect for ZnO films implanted with high doses of Co
ions(17

).Table I summarizes many of the recent reports of the magnetic properties of transition metal doped ZnO( '. There is still a
wide variation reported for the magnetic properties of transition metal doped ZnO (s.9.71-s6). The exact growth conditions are crucial in
determining the magnetic properties of the material at these high impurity concentrations (8,9.7o,71). A key issue in many of the
published reports is whether the resulting material is indeed an alloy of transition-metal elements with the host material or whether it
remains as the host material with clusters, precipitates or second phases that are responsible for the observed magnetic properties. A
relatively complete characterization of the DMS would involve magnetic hysteresis measurements as well as field-cooled and zero
field-cooled magnetization, magneto-transport, high resolution transmission electron microscopy, chemical bonding information
obtained from X-Ray Photoelectron Spectroscopy(XPS) and lattice location measurements by ion channeling or Extended X-Ray
Absorption Fine Structure (EXAFS).In most cases, such a detailed characterization is not carried out. The ZnO system provides an
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excellent platform for studying such effects, since most of the secondary phases that could form cannot explain the observed
Imagnetism.

The recent model of Coey et al.(5ý,the so-called spin-split-orbit model, is shown schematically in Figure 5. The ferromagnetic
exchange is mediated by shallow donor electrons that form BMPs, which in turn overlap to create a spin-split impurity band. Magnetic
ions in different charge states couple by virtual hopping of the 'extra' electron from one ion to the other (). The 3d electrons in the
partially occupied 3d-orbitals are allowed to hop to the 3d-orbitals of the neighboring TM, if neighboring TM ions have parallel
magnetic moments. The ferromagnetic exchange is mediated by charge carriers in a spin-split impurity band formed by extended
donor states. The impurity states hybridize with the d-orbits of the transition metal elements.

It should also be noted that there is also a school of thought that suggests the observed ferromagnetism is not intrinsic to the
transition-metal doped ZnO, but may originate from small clusters of contaminants (7 2,'7 )This controversy points out the need to use a
variety of different characterization methods to establish the lattice position, charge state and oxidation state of the transition metal in
the ZnO lattice. Some of the more useful methods are the observation of the Anomalous Hall Effect (AHE) (70,o7) or the observation of
polarized light emission from a quantum well using the DMS material as a spin injector. The latter has not yet been demonstrated for
the ZnO system. To be considered a true DMS, it is necessary to show that the carrier population is polarized. In the case of Znl.,Co.O
magneto-optical effects measured by magnetic circular dichroism (MCD) indicate this is a true DMS material with polarized carrier
population (24,27). The MCD spectra of ZnO films doped with Sc, Ti, V, Cr, Mn, Co, Ni, and Cu using pulsed laser deposition were
measured, as shown in Figure 6. Those doped with Mn, Fe, Co, Ni and Cu showed clear MCD structures near 3.4 eV. The films doped
with Sc, Ti, V, and Cr did not exhibit any magneto-optical effect and were paramagnetic. Results from other methods that determine
the half-metallicity ( such as X-ray magnetic circular dichroism, a difference spInm of two x-ray absorption soNtra (XAS), one
taken with left circularly polarized light, and one with right circularly polarized light. By closely analyzing the XMCD spectrum,
information can be obtained on the magnetic properties of the atom, such as its soin and orbital magnetic moment) or can determine
the oxidation state (XPS) or the lattice position (EXAFS, Ion Channeling) are needed.

Theory for Ferromagnetism in DMS

The mean-field Zener model proposed by Dietl et al.(12) has been successful in explaining the transition temperatures observed for
Ill-V DMS such as p-(GaMn)As and 1I-VI DMS such as (Zn,Mn)Te. The mean-field Zener theory is based on the original model of
Zener and the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction (5.7o.71). In the Zener model, the direct interaction between d
shells of adjacent Mn atoms (super-exchange) leads to an antiferromagnetic configuration of the d shell spins because the Mn-d shell
is half-filled. By contrast, the indirect coupling of spins through the conduction electrons tends to align the spins of the incomplete d
shells in a ferromagnetic manner. It is only when this coupling dominates over the direct super-exchange coupling between adjacent d
shells that ferromagnetism is present (12.71). Accordingly, the mean-field approach assumes that the ferromagnetism occurs through
interactions between the local moments of the Mn atoms mediated by free holes in the material. This approach works well for
materials in which the transition metal dopants introduces a shallow level in the bandgap and therefore the material achieves a near-
metallic conductivity when percent levels of the TM dopant are introduced on substitutional sites within the host.

The spin-spin coupling in the Zener approach is also assumed to be a long-range interaction, allowing the use of a mean-field
approximation (1,.7 ). The mean-field model calculates the effective spin-density due to the Mn ion distribution within the host
material. The direct Mn-Mn interactions are antiferromagnetic (AF) so that the Curie temperature Tc, for a given material with a
specific Mn concentration and hole density (derived from Mn acceptors and/or intentional additional shallow level acceptor doping), is
determined by a competition between the ferromagnetic and antiferromagnetic interactions (2,7 ). As compared to the RKKY
interaction, the mean-field Zener model takes into account the anisotropy of the carrier-mediated exchange interaction associated with
the spin-orbit coupling in the host material. In the process it reveals the important effect of the spin-orbit coupling in the valence band
in determining the magnitude of the Tc and the direction of the easy axis in DMS(7 1). Based on this model, it was predicted that TM-
doped p-type GaN and ZnO, as shown in Figure 1, are the most promising candidates for ferromagnetic DMS with high Curie
temperature(1 2). However, one aspect of these predictions that is usually overlooked is that they assumed very high hole concentrations
(>1020 cm"3) and large Mn contents (5 at.%).While the latter is possible in ZnO, the former is not possible and indeed the relatively
low carrier densities in most wide bandgap semiconductor-based DMS precludes the achievement of the classical carrier-induced
ferromagnetism.

To overcome the limitations of the Zener-type carrier-induced models for low carrier density materials where the TM dopant
may not necessarily introduce additional carriers, Sato and Katayama-Yoshida (6,3,33-37) performed first principles ab initio
calculations of the electronic structures of TM-doped ZnO and proposed the double exchange mechanism for the ferromagnetism. In
the double exchange mechanism, also originally proposed by Zener, magnetic ions in different charge states couple with each other by
virtual hopping of the extra electron from one ion to the other. In the DMS material, if neighboring TM magnetic moments are in the
same direction, the TM-d band is widened by the hybridization between the spin-up states. Therefore, in the ferromagnetic
configuration the band energy can be lowered by introducing carriers in the d band. In these cases, the 3d electron in the partially
occupied 3d-orbitals of the TM is allowed to hop to the 3d-orbitals of the neighboring TM, if neighboring TM ions have parallel
magnetic moments. As a result, the d-electron lowers its kinetic energy by hopping in the ferromagnetic state, or the so-called double
exchange mechanism.

Sato and Katayama-Yoshida have reviewed their first principles approaches to theory of magnetism in DMS previously (6,13,33.

"3.The basic approach is to calculate the total energy and electronic structures for the TM-doped material using density functional
theory (DFT). The magnetic state of the DMSs can be investigated by calculating the electronic structure of a ferromagnetic DMS in
which all the magnetic moments of the substitutional ions are parallel to each other and that of a spin-glass like state in which there are
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at least two components of transition metal ions whose magnetic moments are anti-parallel(6"13'3- 37"71). The total energy of the
Yerromagnetic state minus that of the spin-glass state is calculated as a function of transition-metal composition. This approach was
used to predict that the TM-doped ZnO is a candidate for high-Tc ferromagnetic DMS (6.11.33-37). The first principle calculations
predicted that transition metals V, Cr. Fe, Co, and Ni-doped ZnO would exhibit ferromagnetism at TM concentrations from 5% to
25%, whereas the Mn-doped ZnO would be antiferromagnetic in the ground state because of the exact half-filled dX state of Mn ions.
In these calculations, the ferromagnetic state in Mn-doped ZnO was found to be stabilized by hole doping due to the double exchange
mechanism as shown in Figure 4.It is important to realize that Tc values well in excess of room temperature, which would be needed
since devices operate in excess of this temperature due to self-heating, were only predicted for high TM concentrations where it is
expected to be difficult to reproducibly incorporate such large dopant fractions.

The first-principle calculations also suggested that the n-type doping in ZnO can increase the Curie temperature of Fe-, Co-
and Ni-doped samples when the effects of disorder are taken into account by what is called the coherent potential approximation
6,"333-3"7). Considering that n-type ZnO is readily available and the intrinsic defects such as O-vacancies and Zn-interstitials form donor
states, it was concluded that (Zn, Fe)O, (Zn, Co)O and (Zn, Ni)O are promising candidates for high-Tc ferromagnets. It was also
suggested that (Zn,Mn,Fe)O, (Zn,Mn,Co)O, or (Zn,Mn,Ni)O may show carrier-induced ferromagnetism under electron doping by
tuning the ratio of Mn to Fe, Co or Ni(6"' 3, 3 37 ).

Spin Relaxation in ZnO

Time-resolved magneto-PL results from undoped and Mn-doped ZnO structures have recently been performed in an effort to
detect polarized light emission. In an applied magnetic field, the ZnO PL becomes polarized to about 10% at 6T. The polarization
degree decreases with increasing emission energy. The behaviour is similar for both undoped and doped ZnO. Data for
Zn(Mn,Mg)O/ZnO/AlGaN spin LEDs grown on sapphire is shown in Figure 7.No transient PL polarization was noticeable by
monitoring the high-energy side of the PL emission. This may be attributed to very fast spin relaxation between the Zeeman split spin
levels, faster than the experimental resolution about 20 ps, even near k=O. By monitoring the low-energy side of the PL band, on the
other hand, a polarization rising (though weak) with time seems to occur indicating a slower spin relaxation process associated with
the monitored emission. This energy dependence is opposite to what we observed in InGaN quantum wells (7-). If one can design a
resonant tunnelling diode (RTD) such that the polarized spins carried by either electrons or holes can be injected directly to the ground
state of the corresponding carriers in a spin detector without involving energy and momentum relaxation, there may have a hope to
preserve the spin polarization much better. Spin relaxation within the spin sublevels of the ground state seems to be within the range
that is detectable, based on past results from InGaN (sT-s). Viewing from the observed 50 ps spin relaxation time for the exciton
ground state in InGaN QW, a spin LED or a device that utilizing ZnO-based materials for spin transport has to operate on a similar or
shorter time scale to be effective even with a RTD-type of spin injection. For example, a pulsed operation mode should be employed.

In recent work, spin-dependent tunneling between two ferromagnetic films separated by an insulating (1) film shows junction
magnetoresistance (JMR) of better than 20% (•93). This suggests that tunneling may be a more effective way of achieving spin
injection than diffusive transport. A large magnetoresistance can also be obtained if the tunnel barrier is also ferromagnetic. A
prototype device, shown in Figure 7, comprises a non-magnetic electrode, a ferromagnetic insulating tunnel barrier (the polarizer), and
a ferromagnetic counterelectrode (the analyzer). Below T, of the ferromagnetic insulator, the tunnel barrier is spin split, giving a
highly polarized tunnel current as indicated in the schematic. If the moments of the ferromagnetic counterelectrode analyzer are
parallel (antiparallel) to the moments of the spin polarized tunnel current, then the resistance is low (high). Magnetoresistance
exceeding 100% has been obtained in an AI-EuS-Gd device 9, where EuS, the ferromagnetic insulator, has a Tc = 16.8K and Gd, the
analyzer, a Tc near room temperature.

One key objective in the future will be to find materials that enable operation of these novel spin filter devices at room
temperature. Promising barrier materials might be transition metal doped ZnO, insulating ferrites (CoFe 20 4), or insulating DMS
materials with localized carriers to provide the necessary magnetic interactions. For satisfactory operation the localization length ,L

must be less than the sample size (barrier thickness) but greater than the length characterizing the magnetic interactions. An example
of such a device based on ZnO is shown at the bottom of Figure 8.

A number of initial device configurations for GaMnAs have already been demonstrated at low temperatures and this might be
possible in ZnO. This list includes exchange-biased samples, spin-dependent resonant tunnelling diodes, magnetic tunnel junctions
and spin-polarized light-emitting diodes ('spin LEDs)sT "98 ) The presence of tunable wavefunction overlap between magnetic ions and
carriers confined to quantum structures has also been reported (7). More controversial are reports of very large magneto-transport
effects, the so-called "giant planar Hall effect"(9).There are also numerous theoretical analyses of new bipolar device configurations
combining n-doped semiconductors with GaMnAs.

One of the main device concepts envisioned for spintronics has been the spinfet which has been suggested to be able to operate at
lower powers and higher speeds than conventional charge-controlled transistors. However, recent reexamination of the spinfet concept
has revealed serious potential shortcomings. Cahay and Bandyopadhyay (99-1o2) modelled phase-coherent spin transport in the weakly
disordered quasi-one-dimensional channel of a gate-controlled electron spin interferometer .When the effects of an axial magnetic field
in the channel of the interferometer (caused by the ferromagnetic contacts), a Rashba spin-orbit interaction, and elastic (nonmagnetic)
impurity scattering are all considered, it was shown that in the presence of an axial magnetic field, nonmagnetic impurities can cause
spin relaxation in a manner similar to the Elliott-Yafet mechanism. Bandyopadhay and Cahay (99-102) suggest that is generally untrue
that spin-based devices will be faster and consume less power than their electronic counterparts. They did an analysis of the switching
voltages in a one-dimensional spinfet relative to a Si-based MOSFET and found that the former is actually not a lower power device.
Their main conclusion was that unless materials with extremely strong spin-orbit interaction can be developed, the spintronic devices
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will not measure up to their electronic analogs .Several other manifestations of the spinfet have recently been proposed ,but in each
'case, doubts have been raised whether these present versions show any advantage over the original Datta-Das design. Bandyopadhyay
and Cahay (99-102) concluded that it is unlikely that currently proposed spinfets will play a significant role in digital, analog or mixed
signal circuits but may be more suited to applications in memory, where high gain, high frequency, etc. are not necessary. They also
concludetd that spintronic devices may also have better noise margin since spin does not easily couple to stray electric fields (unless the
host material has very strong spin-orbit interactions). Thus they concluded that it is also possible that spintronics may be able to
outpace electronics in nonconventional applications such as single spin logic, spin neurons and using spin in a quantum dot to encode
qubits. There is still hope that integration of spintronic devices with existing electronic and photonic devices and circuits may offer
new functionalities and that this is where the DMS materials may have the most impact.

FUTURE WORK

The status of transition metal doped ZnO is still in a state of controversy. More work is needed to establish both lattice location or
chemical state and the origin of the observed magnetism. Methods that detect or manipulate spin polarized injection, transport and
detection in ZnO or ZnCdO/ ZnMgO heterostructures are definitely needed.
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Table I List of ZnO-based DMS recently reported(after refs. 8 and 9)

Compound , TM Substrate Fabrication Growth Oxygen Post- T, Notes Ref
content method temperature pressure annealing (K)

(°C) (Torr)

ZnO:Mn <0.35 c-Sapphire PLD 600 5 x 10"s N/A 15

ZnO:Mn 0.36 c-Sapphire PLD 600 N/A Spin-glass 14

Znl.-TMxO c-Sapphire PLD 500-600 1 T 10"9to N/A 16
10-6

ZnO:Co 0.02-0.5 c-Sapphire PLD 300-700 1 X 10-6to Spin-glass 17
10-1

ZnO:Mn 0.01-0.36 c-Sapphire PLD 610 5 x 10 Paramagnetic 18

ZnO:Mn 0.07 a-sapphire sputtering 400 0.06 Paramagnetic 20

ZnO:Mn 0.03-0.2 GaAs(100) sputtering 500-600 8xl- 63

ZnO:(Co, Mn, 0.05-0.25 r-Sapphire PLD 350-600 r-4 x 10- 280- 2 i.B/Co 28
Cr, or Ni) 300

ZnO:Ni 0.01-0.25 c-Sapphire PLD 300-700 1 x 10 Superpara- or ferro- 55
magnetic

ZnO:V 0.05-0.15 r-Sapphire PLD 300 l0f5 to 10.5 >350 0.5 pafV 56

ZnO:(Co, Fe) <0.15 SiO 2/Si Magnetron 600 2 x 10"' 6000C, 10 >300 12-15 emu/cm3  30
sputtering min, 1.0 x

10-5 Ton

ZnO:Co 0.03-0.05 Bulk ZnO Ion 700C,5 >300 Oriented Co 57
implantation min under precipitates

02

ZnO:Co 0-0.25 c-Sapphire Sol-gel <350 7000C, 1 >350 0.56 ps/Co 58
min

ZnO:Mn 0-0.3 c-Sapphire PLD >30- 0.15-0.17 liB/Mn 23
45

ZnO:Mn <0.04 Sintered 500-700C Air, >425 0.006 emu/gm,single 38
pellets atmospheric phase

pressure

ZnO:Mn 0.02 Fused PLD 400C >425 0.05 emu/gm, single 38,:
quartz phase

ZnO:(Fe, Cu) 0-0.1 Solid state 897 550 0.75 pa/Fe 50-
reaction

ZnO:Co 0.015 PLD 650C 5x10"s >300 ferromagnetic 60

ZnO:(Co, Al) 0.04-0.12 Glass RF I X 10-2 in >350 0.21 Wi/Co 61
sputtering Ar

ZnO:Mn 0.04-0.09 c-sapphire Reactive 200-380 >400 3gB /Co 62

sputtering

ZnO:(Mn, Sn) 0-0.3 Implantation 5 min, 250 ferromagnetic 26
7000C

ZnO:Mn and Sn Mn c-sapphire PLD 400-600 0.02 >300 ferromagnetic 64
0.03,Sn<0. 1
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ZnO:Mn and Co 0.05-0.15 Crystalline antiferromagnetic 65

precursor

ZnO:Mn and Co <0.05 bulk Melt growth 1000C paramagnetic 66

ZnO:Co 0.1 0-face PLD antiferromagnetic 67
ZnO

ZnO:Co <0.35 r-sapphire MOCVD 350-600C 40 20 >350 ferromagnetic 68
min,500C
in
vacuum

ZnO:Co and Fe <0.15 SiO2/Si Magnetron 600C 2X10" 10 min >300 Ferromagnetic ,12-15 69
sputtering 600C, 10" emu/cm3

5Torr

ZnO:Mn 0.1 r-sapphire PLD 650C 0.1 >300 0.075 giw/Mn 41

ZnO:Mn and Cu 0.05-0.1 r-sapphire PLD 650C 0.1 400 0.1 iga/Mn 41

ZnO:Sc,Ti,V,Fe, 0.05 r-sapphire PLD 600C 0.1-750 >300 0.5 i.WTi,5.9 giWCo 5,5(

Co or Ni 0.3 gB/Sc

ZnO:Mn 0.02 Bulk Powder, 500C >300 0.16 ;awMn 38,
pellets pellets and

laser-ablated
films

ZnO:Cr STO PLD >400 ferromagnetic 40

ZnO: Mn 0.08 tetrapods evaporation 600C 43 (Zn,Mn)Mn20 4phases 54

ZnO:Mn 0.05 ZnO sub PLD 200-600C 250 High Tc fpr lower To 51
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Figure Captions

Figure 1.Predicted Curie temperature as a function of lattice constant for a variety of semiconductors (after S.C.Erwin (Naval
Research Laboratory)).The materials predicted to have high Tc's have large p-d hybridization and small spin-orbit interaction.

Figure 2.' Representation of magnetic polarons. A donor electron in its hydrogenic orbit couples with its spin antiparallel to impurities
with a 3d shell that is half-full or more than half-full. The figure is drawn for x = 0.1, y = 12. Cation sites are represented by small
circles. Oxygen is not shown; the unnoccupied oxygen sites are represented by squares. (After Coey et al.(5))

Figure 3. The stability of the ferromagnetic states in ZnO-based DMSs. V, Cr, Mn, Fe, Co or Ni is doped as a magnetic impurity. The
vertical axis is the energy difference per one formula unit between the ferromagnetic and the spin-glass state. A positive energy

difference indicates that the ferromagnetic state is more stable than the spin-glass state (after K. Sato and H. Katayarna-Yoshida(34'37 )).

Figure 4.Stability of the ferromagnetic ordering of Mn magnetic moments in ZnO. The energy difference of A E = TE (anti-
ferromagnetic ordering)-TE(ferromagnetic ordering) is plotted as a function of carrier concentration. The carrier concentration means
N (hole doping) and Ga (electron doping) concentration in the supercell. The inset shows the simple orthorhombic supercell used in

the preset calculations (after K. Sato and H. Katayama-Yoshida (34-7)).

Figure 5. Schematic and structure of oxide with 3d impurities and spin-split donor impurity band. In (a) we show the position of the 3d
level for low Tc when the splitting of the impurity band is small. In (b) and (c), respectively, we show the positions of the minority or
majority spin 3d bands which lead to high Tc (after Coey et al.,s)

Figure 6. Transmission MCD spectra of ZnO and ZnO: transition metal (after Ando et al. (27)).

Figure 7. PL spectra at 2K from Zn(Mn,Mg)O/ZnO/AIGaN spin LEDs grown on sapphire, as well as their polarization properties at
300K.

Figure 8. Spin tunnel device in which the insulating tunnel barrier is ferromagnetic (top) and possible embodiment in the ZnO
materials system (bottom).
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